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Abstract. The accuracy of the rigid-Earth solution SMART97 is 2 �as
over the time interval (1968, 2023). To obtain a nonrigid-Earth solution,
we use the transfer function of Mathews (1999). The perturbations of the
third component of the angular velocity vector are taken into account.

1. The rigid-Earth solution SMART97

The di�erential equations of the rigid-Earth rotation are
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The torque (L, M , N) has to be computed by using simultaneously the zonal
and the tesseral harmonics because the �rst and the second derivatives of the
diurnal and the semidiurnal terms are very important with respect to the long-
period terms. Table 1 gives the amplitudes of the semidiurnal term (coming
from C2;2 and S2;2), of the 18.6-year term and of the 13.66-day term.

Integrated in this way, the rigid Earth solution SMART97 (Bretagnon et
al., 1998) can reach a high accuracy. It has been compared with a numerical
integration using DE403 (Standish et al., 1995) for the positions of the Moon,
the Sun and the planets. The accuracy is 2 �as over 1968{2023. Figure 1 gives
the di�erences for  , ! and for the Earth rotation angle '.

230



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAR 2000 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Nonrigid-Earth Rotation Solution 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Naval Observatory 3450 Massachusetts Avenue, N.W. Washington,
DC 20392-5420 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
Towards models and constants for sub-microarcsecond astrometry, Proceedings of IAU Colloquium 180
held at the U.S. Naval Observatory, Washington, DC, USA, 27-30 March 2000 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Nonrigid-Earth Rotation 231

-3
-2
-1
0
1
2
3

2440000 2444000 2448000 2452000 2456000 2460000
µa

s

∆ψ

-1

-0,5

0

0,5

1

2440000 2444000 2448000 2452000 2456000 2460000

µa
s

∆ω

-3
-2
-1
0
1
2
3

2440000 2444000 2448000 2452000 2456000 2460000

µa
s ∆ϕ 

Figure 1. Theory SMART97 | numerical integration using DE403
over 1968{2023.

2. The inuence of the truncation level

Table 2 gives the number of the periodic terms for � = 0:01�as, � = 0:1�as, and
� = 1�as and the number of Poisson terms greater than � over [J2000.0�100 yrs,
J2000.0+100 yrs], for the rigid-Earth solution SMART97. The table also gives
the accuracy of the solution for di�erent levels of truncation. Data are given
for the variable p (� in the IERS Conventions 1996) of nutation in longitude
reckoned from the equinox of date. The number of terms of the Herring solution
for a nonrigid Earth (McCarthy, 1996) is given by comparison.

Table 1. Amplitude of the 18.6-year, 18.66-day, 12-hour terms and
of their �rst and second derivatives.

period  (in 00) _ (in 00/yr) � (in 00/yr2)
18.6 years 17.280776 5.838 1.96
13.66 days 0.221507 37.212 6251.37
12 hours 0.000036 0.132 762.56

The Poisson terms In SMART97, the P�t Poisson terms (Poisson terms of
degree 1) represent 13.6% of the periodic terms with a truncation of 1�as, 16.8%
with a truncation of 0.1�as and 20.8% with a truncation of 0.01�as. That must
be compared to the Herring solution in which the P�t Poisson terms represent
29.1% of the periodic terms with a truncation of 1�as.
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The truncation In the construction of the SMART solution for a nonrigid Earth
using the transfer function of Mathews, the amplitudes of some terms in reso-
nance can be increased considerably. So, to obtain all the terms greater than 0.1
�as in the nonrigid-Earth solution it is necessary to keep a level of truncation
of 0.01 �as for the rigid-Earth solution. We give the number of terms of the
SMART solution for a nonrigid Earth in Table 3.

Table 2. Number of terms of the nutation in longitude p in SMART97
for di�erent truncation levels �.

Solution and � P P�t P�t2 P�t3 P�t4 Total Accuracy
SMART (0:01�as) 3910 815 183 14 2 4924 2.2 �as
SMART (0:10�as) 1586 266 61 4 0 1917 8 �as
SMART (1:00�as) 642 87 17 1 0 747 40 �as
Herring (1:00�as) 375 109 0 0 0 484

Table 3. Number of terms of the nutation in longitude of the nonrigid
Earth solution at the 0.1 �as truncation level.

Periodic P�t P�t2 P�t3 P�t4 Total
1581 264 60 4 0 1909

3. Nonrigid-Earth solution

3.1. The transfer function of Mathews (1999)

To compute the nonrigid-Earth solution, we use the transfer functions in a strict
process. For instance, the transfer function of Mathews (1999) is
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with e
R
= 0:003284507, (1 + �) is the nutation frequency in space. We use the

complex frequencies

�1 = ( 0:0025940; �0:0001438546); �2 = (�1:00231861; 0:00002578);

�3 = (�0:998957; 0:000687); �4 = ( 0:000413499; 0:000000280);

and the complex coe�cients

N0 = ( 1:0000099; �0:37652854� 10�8);

N1 = (�0:79952969; 0:043796154);

N2 = ( 0:048964919; 0:16332679� 10�2);

N3 = ( 0:29445472� 10�3; �0:82328898� 10�4);

N4 = (�0:15139223� 10�4; �0:11248592� 10�5):
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3.2. Application to the Earth's angular velocity vector

We apply the new transfer function not to the quantities sin "0� and �" but
to the Earth's angular velocity vector (p, q, r) of the rigid case expressed as a
function of the three Euler angles
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For each prograde or retrograde argument, the angular velocity vector of the
nonrigid Earth is obtained by multiplication by the transfer function
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and ' in the nonrigid case by the inverse of (1)
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These equations are strict but the right-hand members depend on ! and ' and
the derivative of  , and we have to proceed by iterations to solve this system.
The process converges without di�culties. The precision of the computation of
_ 
NR

is better than 3:5�10�9 00=year which yields an accuracy of 0.01 �as for the
18.6-year term and 0.50 �as for the 883 year term. The classical method is to
assume r

NR
= r

R
: The results are illustrated by the following table. We denote

SM97M99 as the solution obtained by SMART97 + Mathews (1999). We can
see the results from Mathews's function are very close to the series of Herring
(McCarthy, 1996).

Solution Argument p (sin) p (cos) " (sin) " (cos)
SM97M99 �3 +D � F 17 206 664 �3 357 �1 488 �9 205 156
Herring 17 206 394 �3 702 �1 523 �9 205 474
SM97M99 2�3 �1 318 625 �662 �486 573 040
Herring �1 318 526 �670 �471 573 046
SM97M99 2�3 + 2D �227 663 309 150 97 854
Herring �227 720 269 136 97 864
SM97M99 �3 �36 674 �123 068 16 616 684
Herring �36 777 �123 010 16 590 698

The full method is to take into account the tidal variations in the Earth's
rotation. We introduced the series (! � !

S
) and (! � !

D
) (McCarthy, 1996) in

order to obtain r
NR

from r
R
,

r
NR

= r
R
+ (! � !

S
) + (! � !

D
):
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Figure 2. Inuences of (!�!
S
) and (!�!

D
) on p and " over 1968{

2023. Units are �as.

The modi�cations are very important not only for the third Euler angle ' but
also for the �rst two. For instance, we obtain

�p = 42 242 t+ 69 sin(2�3 + 2D � 2F )� 4 sin(�3 +D � F ) + � � � ;

�" = �15 t+ 712 cos(�3 +D � F )� 19 cos(2�3 + 2D � 2F ) + � � � ;

where the amplitudes are in �as and the time in thousands of Julian years from
J2000. Therefore, for ", the 18.6-year term becomes

" = �1 488 sin(�3 +D � F ) � 9 204 444 cos(�3 +D � F ):

By comparison with the previous table we see the necessity to determine again
the transfer function. The modi�cations of p and " are plotted in Figure 2.

4. Conclusion

We have now to determine a new nonrigid-Earth rotation solution by using the
new model of Mathews et al. (2000) taking into account the tidal variations in
th Earth's rotation.
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